Classification of Spot-Welded Joints in Laser Thermography Data Using Convolutional Neural Networks
نویسندگان
چکیده
Spot welding is a crucial process step in various industries. However, classification of spot quality still tedious due to the complexity and sensitivity test material, which drain conventional approaches its limits. In this article, we propose an approach for inspection weldings using images from laser thermography data. We data preparation based on underlying physics spot-welded joints, heated with pulsed by analyzing intensity over time derive dedicated filters generate training datasets. Subsequently, utilize convolutional neural networks classify weld compare performance different models against each other. achieve competitive results terms classifying classes compared traditional approaches, reaching accuracy more than 95 percent. Finally, explore effect augmentation methods.
منابع مشابه
Evaluating Weld Magnification Factor in Welded Tubular Joints Using Artifitial Neural Networks
In welded tubular joints, when the fatigue crack depth is less than 20% of chord wall thickness, the crack growing process is highly affected by weld geometry.
 Hence, T-butt solution and weld magnification factor (Mk) are applicable tools for evaluating the crack growth rate in this domain. In this research, the capability of Artificial Neural Network (ANN) for estimating the Mk of weld toe...
متن کاملEvaluating Weld Magnification Factor in Welded Tubular Joints Using Artifitial Neural Networks
In welded tubular joints, when the fatigue crack depth is less than 20% of chord wall thickness, the crack growing process is highly affected by weld geometry. Hence, T-butt solution and weld magnification factor (Mk) are applicable tools for evaluating the crack growth rate in this domain. In this research, the capability of Artificial Neural Network (ANN) for estimating the Mk of weld toe c...
متن کاملImage Classification using Convolutional Neural Networks
The specific paper I’ve chosen is titled “ImageNet Classification with Deep Convolutional Neural Networks” [1]. ImageNet is an annual competition in image recognition where researchers in the field pit their models against each other to achieve the highest classification accuracy on the same set of images. The model put forward in this paper, named AlexNet from it’s main author, beat the second...
متن کاملAcoustic Event Classification Using Convolutional Neural Networks
Acoustic scene classification (ASC) aims to distinguish between different acoustic environments and is a technology which can be used by smart devices for contextualization and personalization. Standard algorithms exploit hand-crafted features which are unlikely to offer the best potential for reliable classification. This paper reports the first application of convolutional neural networks (CN...
متن کاملMedical Text Classification using Convolutional Neural Networks
We present an approach to automatically classify clinical text at a sentence level. We are using deep convolutional neural networks to represent complex features. We train the network on a dataset providing a broad categorization of health information. Through a detailed evaluation, we demonstrate that our method outperforms several approaches widely used in natural language processing tasks by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2021.3063672